|
|
数字技术在脊柱外科的应用 |
吕国华, 邝磊 |
中南大学湘雅二医院脊柱外科,湖南 长沙 410011 |
|
[1] Shree Kumar D, Ampar N, Wee Lim L. Accuracy and reliability of spinal navigation: An analysis of over 1000 pedicle screws[J].J Orthop,2019,18:197-203. [2] Hara T, Iwamuro H, Ohara Y, et al. Efficacy of atlantoaxial transarticular screw fixation using navigation-guided drill: Technical note[J].World Neurosurg,2020,134:378-382. [3] Feng W, Wang W, Chen S, et al.O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: a systematic review and meta-analysis[J].Int Orthop,2020,Jan 7. doi: 10.1007/s00264-019-04470-3(Epub ahead of print). [4] Guha D, Jakubovic R, Gupta S,et al.Intraoperative error propagation in 3-dimensional spinal navigation from nonsegmental registration: A prospective cadaveric and clinical study[J].Global Spine J,2019,9(5):512-520. [5] Guha D, Jakubovic R, Gupta S, et al.Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy[J].Spine J,2017,17(4):489-498. [6] Chan A, Parent E, Wong J, et al. Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: A systematic review update and meta-analysis[J].Eur Spine J,2019 Nov 28. doi: 10.1007/s00586-019-06219-3(Epub ahead of print). [7] Balling H.Time demand and radiation dose in 3D-fluoroscopy-based navigation-assisted 3D-fluoroscopy-controlled pedicle screw instrumentations[J].Spine (Phila Pa 1976),2018,43(9):E512-E519. [8] Urbanski W, Jurasz W, Wolanczyk M, et al.Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery[J].Clin Orthop Relat Res,2018,476(5):1020-1027. [9] Ghasem A, Sharma A, Greif DN, et al. The arrival of robotics in spine surgery: A review of the literature[J].Spine (Phila Pa 1976),2018,43(23):1670-1677. [10] Overley SC, Cho SK, Mehta AI,et al.Navigation and robotics in spinal surgery: Where are we now[J].Neurosurgery,2017,80(3S):S86-S99. [11] Joseph JR, Smith BW, Liu X, et al.Current applications of robotics in spine surgery: a systematic review of the literature[J].Neurosurg Focus,2017,42(5):E2. [12] Siccoli A, Klukowska AM, Schr der ML,et al. A systematic review and meta-analysis of perioperative parameters in robot-guided, navigated, and freehand thoracolumbar pedicle screw instrumentation[J].World Neurosurg,2019,127:576-587. [13] Tan LA, Yerneni K, Tuchman A, et al.Utilization of the 3D-printed spine model for freehand pedicle screw placement in complex spinal deformity correction[J].J Spine Surg,2018,4(2):319-327. [14] Cramer J, Quigley E, Hutchins T, et al. Educational material for 3D visualization of spine procedures: Methods for creation and dissemination[J].J Digit Imaging,2017,30(3):296-300. [15] Park HJ, Wang C, Choi KH, et al. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training[J].J Orthop Surg Res,2018,13(1):86. [16] Tong Y, Kaplan DJ, Spivak JM, et al. Three-dimensional printing in spine surgery: a review of current applications[J].Spine J,2019,pii: S1529-9430(19)31072-1.doi: 10.1016/j.Spinee.2019.11.004(Epub ahead of print). [17] Liu K, Zhang Q, Li X, et al. Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis[J].Eur Spine J,2017,26(6):1684-1689. [18] Pan Y, Lü GH, Kuang L,et al. Accuracy of thoracic pedicle screw placement in adolescent patients with severe spinal deformities: a retrospective study comparing drill guide template with free-hand technique[J].Eur Spine J,2018,27(2):319-326. [19] Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma[J].Spine (Phila Pa 1976),2016 ,41(1):E50-54. [20] Girolami M, Boriani S, Bandiera S, et al. Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors : Preliminary results on a case-series of 13 patients[J].Eur Spine J,2018,27(12):3073-3083. [21] Burnard JL, Parr WCH, Choy WJ, et al.3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices[J].Eur Spine J,2019 Dec 3.doi: 10.1007/s00586-019-06236-2(Epub ahead of print). [22] Peh S, Chatterjea A, Pfarr J, et al. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device[J].Spine J,2019 Dec 19. pii: S1529-9430(19)31147-7.doi: 10.1016/j.Spinee.2019.12.009(Epub ahead of print) [23] Pfandler M, Stefan P, Mehren C, et al.Technical and Nontechnical Skills in Surgery: A Simulated Operating Room Environment Study[J].Spine (Phila Pa 1976),2019,44(23):E1396-E1400. [24] Laverdière C, Corban J, Khoury J, et al. Augmented reality in orthopaedics: a systematic review and a window on future possibilities[J].Bone Joint J,2019,101-B(12):1479-1488. [25] Carl B, Bopp M, Sa B, et al. Implementation of augmented reality support in spine surgery[J].Eur Spine J,2019,28(7):1697-1711. [26] Elmi-Terander A, Burstr m G, Nachabé R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy[J].Sci Rep,2020,10(1):707. [27] Liu H, Wu J, Tang Y, et al.Percutaneous placement of lumbar pedicle screws via intraoperative CT image-based augmented reality-guided technology[J].J Neurosurg Spine,2019 Dec, 20:1-6.doi: 10.3171/2019.10.Spinee19969(Epub ahead of print). [28] Azimifar F, Hassani K, Hossein Saveh A, et al. A New Template and Teleoperation System for Human-Guided Spine Surgery[J].Artif Organs,2019,43(4):424-434. [29] Roser F, Pfister G, Tatagiba M, et al.Live surgery in neurosurgical training courses: essential infrastructure and technical set-up[J].Acta Neurochir (Wien),2013,155(3):541-545. [30] Goz V, Spiker WR, Brodke D.Mobile messaging and smartphone apps for patient communication and engagement in spine surgery[J].Ann Transl Med,2019 ,7(Suppl 5):S163. |
[1] |
肖培芬, 罗婧. 局部持续冲洗化疗在腰椎结核Ⅰ期后路病灶清除植骨融合内固定术中的应用[J]. 医学临床研究, 2019, 36(9): 1668-1671. |
[2] |
王解生. 后路椎弓根螺钉固定及前路病灶清除后大块异体骨重建治疗合并椎体缺失的儿童胸腰椎结核的疗效观察[J]. 医学临床研究, 2018, 35(4): 747-749. |
[3] |
金强,杨铁毅,宋炜中. 脊柱手术后下肢深静脉血栓的危险因素分析[J]. 医学临床研究, 2018, 35(2): 239-241,245. |
[4] |
丁浩,周孜辉,沈强,朱亮. 后路减压椎弓根系统内固定联合前路病灶清除术治疗胸腰椎结核的疗效观察[J]. 医学临床研究, 2017, 34(10): 1961-1964. |
[5] |
杨帆;韩翠玉;杨雯;侯煜;孙博;梁志兴;申志坤. 病椎间固定在脊柱结核患者治疗中的应用价值[J]. 医学临床研究, 2016, 33(12): 2335-2339. |
[6] |
杨利斌 路坦 杨素敏. 一期前后路联合椎间自体髂骨移植治疗少儿腰椎结核[J]. 医学临床研究, 2015, 32(8): 1463-1467. |
[7] |
陈安基%潘道波%张雄飞%周爱国%黄芙蓉. 自血回输对脊椎手术患者小肠微循环的影响[J]. 医学临床研究, 2014, 31(8): 1459-1461. |
[8] |
唐芳;彭清雄. 乌司他丁对脊柱手术患者围术期凝血功能的影响[J]. 医学临床研究, 2013, 30(6): 1083-1085. |
[9] |
周霖;盛斌. 脊柱手术术后切口感染病原菌培养及耐药性分析[J]. 医学临床研究, 2013, 30(2): 325-327. |
[10] |
李硕夫;黄象望;刘向阳;肖晟;刘宏哲;沈雄杰. Ⅰ期经后路病灶清除植骨融合内固定术治疗胸腰椎结核的疗效观察[J]. 医学临床研究, 2012, 29(2): 274-277. |
[11] |
吴立明;宓士军. 椎体成形术单侧穿刺进针点和穿刺路径的解剖学研究[J]. 医学临床研究, 2012, 29(2): 326-328. |
[12] |
周爱霞;王麓山;王文军. 胸腰椎结核的外科治疗进展[J]. 医学临床研究, 2012, 29(2): 368-370. |
[13] |
陶功稆. 微创脊柱外科历史与现状[J]. 医学临床研究, 2012, 29(2): 371-374. |
[14] |
曾晖;廖志辉;李晓云. 病灶清除植骨融合内固定治疗胸腰椎脊柱结核[J]. 医学临床研究, 2012, 29(1): 115-118. |
[15] |
沈雄杰;李伟伟;王锡阳. 胸腰段脊柱结核术后未愈及术后复发原因的探讨[J]. 医学临床研究, 2011, 28(4): 616-619. |
|
|
|
|