|
|
颈腰椎间盘退变及脊柱融合固定术对脊柱生物力学影响的有限元分析研究进展 |
余无际, 王国华 |
湖南师范大学附属第一医院湖南省人民医院脊柱外科,湖南 长沙 410005 |
|
[1] ADAMS M A, DOLAN P. Spine biomechanics[J].J Biomech,2005, 38(10):1972-1983. [2] HARTMANN F, DIETZ S O, HELY H, et al. Biomechanical effect of different interspinous devices on lumbar spinal range of motion under preload conditions[J].Arch Orthop Trauma Surg,2011, 131(7):917-926. [3] BELYTSCHKO T B,ANDRIACEHI T P,SCHULTZ A B,et al.AnMog studies offorces in the human spine:computational techniques[J].J Biomech,1973,6(4):361-371. [4] KRAG M H, SEROUSSI R E, WILDER D G, et al. Internal displace-ment distribution from in vitro loading of human thoracic and lum-bar spinal motion segments:experimental results and theoretical redictions [J].Spine,1987, 12(12):1001-1007. [5] ACHILLES V,STEFANOUDAKIS G,PETOUSIS M,et al. Evalua tion of an intact,an ACL- deficient,and a reconstruct ed human knee joint finite element model[J].Comput Methods Biomech Biomed Engin,2016,19(3):263-270. [6] MAZAS S, BENZAKOUR A, CASTELAIN J E, et al . Cervical disc herniation:which surgery?[J] .Int Orthop,2019 ,43(4):761-766. [7] NOURI A, TETREAULT L, SINGH A, et al . Degenerative cervical myelopathy:epidemiology, genetics, and pathogenesis[J] .Spine(Phila Pa 1976),2015,40(12):E675-693. [8] BOZIC K J,KEYAK J H,SKINNER H B,et al.Three-dimensional finite element modeling of a cervical vertebra:an investigation of burst fracture mechanism[J].J Spinal Disord,1994,7(2):102-110. [9] BISWAS J K, RANA M, MAJUMDER S, et al. Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine:A finite element study[J].J Orthop Sci,2018, 23(2):258-265. [10] CRONIN D S ,LASSWELL T I, MEDLEY J B, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J].Spine J,2017,17(11):1755-1764. [11] GREAVCS C Y,GADALA M S,OXLAND T R.A three-dimensional finite element model of the cervical spine with spinal cord:an investigation of three injury mechanisms[J].Ann Biomed Eng,2008,36(3):396-405. [12] MOHAMMAD N,CHENG Z,WANG A,et al.Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications[J].Comput Biol Med,2019,109:22-32. [13] ZHIGANG L I,XIAOQIANG H A N,CHENG J I,et al. Construction of a statistical cervical vertebrae geometric model for children 3-10 years old[J].Ann Biomed Eng,2018,46(11):1816-1829. [14] TOBERT D G, ANTOCI V, PATEL S P, et al. Adjacent segment disease in the cervical and lumbar spine[J].Clin Spine Surg,2017,30(3):94-101. [15] 王卫明, 金大地, 瞿东滨. 大鼠增龄及颈椎间盘退变过程中髓核形态转化的研究[J].中华医学杂志, 2005,28:2008-2009. [16] KUROWSKI P, KUBO A. The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae [J].Spine(Phila Pa 1976),1986, 11(7):726-731. [17] KUMAIESAN S,YOGENANDAN N,PINTAR F A.Contribution of disc degeneration to osteophyte formation in the cervical spine:a biomechenical investigation[J].Orthop Res,2001,19(5):977-984. [18] HASSAN C R, QIN Y X, KOMATSU D E, et al. Utilization of finite element analysis for articular cartilage tissue engineering[J].Materials(Basel),2019,12(20):3331. [19] YE Y, YOU W, ZHU W, et al. The applications of finite element analysis in proximal humeral fractures[J].Comput Math Methods Med,2017,2017:4879836. [20] CHAPPUIS V, GAMER L, COX K, et al. Periosteal BMP2 activity drives bone graft healing[J].Bone,2012, 51(4):800-809. [21] WANG Q, HUANG C, XUE M, et al. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing[J].Bone,2011, 48(3):524-532. [22] MARYCZ K,MIESZEK A, GRZESIAK J, et al. The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO2 solgel-derived biomaterial[J].Biomed Res Int,2015:651097. [23] VAN OOIJ A,ONER F C,VERBOUT A J.Complications of artificial disc replacement:a report of 27 patients with the SB Charit'e disc [J].J Spinal Disord Tech,2003,16:369-383. [24] 舒启航,廖亦佳,薛静波,等.新型颈椎3D打印多孔椎间融合器的三维有限元分析[J].中国组织工程研究,2021,25(24):3810-3815. [25] 林国中, 王振宇. 应用有限元模型研究颈椎椎板切除术后的稳定性[J].中华神经外科疾病研究杂志, 2010, 9(4):379. [26] XUEXIAO,M A XIANBO,PENG HONGFEI,XIANG, et al.A finite element modeling of posterior atlantoaxial fixation and biomechanical analysis of C2 intralaminar screw fixation.[J].Chin Med J(Engl),2014,127(7):1266-1271. [27] SAITO T , YAMAMURO T , SHIKATA J , et al. Analysis and prevention of spinal column deformity following cervical laminectomy. I. Pathogenetic analysis of postlaminectomy deformities.[J].Spine,1991, 16(5):494-502. [28] SHIRAZI-ADL, A. Analysis of role of bone compliance on mechanics of a lumbar motion segment[J].J Biomech Eng,1994, 116(4):408-412. [29] NG H W , TEO E C , ZHANG Q H . Prediction of inter-segment stability and osteophyte formation on the multi-segment C2-C7 after unilateral and bilateral facetectomy[J].Pro Inst Mech Eng H,2004, 218(3):183-191. [30] GOEL V K . Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol[J].Spine(Phila Pa 1976),2005,30(24):2755-2764. [31] NATARAJAN R N, ANDERSSON G B. The influence of lumbar disc height and cross -sectional area on the mechanical response of the disc to physiologic loading [J].Spine(Phila Pa 1976),1999, 24(18):1873-1781. [32] GOEL V K,PARK H,KONG W. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach[J].J Biomech Eng,1994, 116(4):377-383. [33] KIM Y E. Effect of disc degeneration at one level on the adjacent level in axial mode [J] .Spine(Phila Pa 1976),1991, 16(3):331-335. [34] SIMON B R, WU J S, CARLTON M W, et al .Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disc[J].J Biomech Eng,1985, 107(4):327-335. [35] 刘耀升.腰椎L4~L5活动节段有限元模型的建立与验证[J].第二军医大学学报, 2006,6:665-669. [36] 郭惠智,梁德,张顺聪,等.斜外侧入路椎间融合术不同内固定方式的有限元分析[J].医学研究生学报,2020,33(4):394-398. [37] 余伟波,王健,梁德,等.TLIF术中最优化单侧螺钉植入和融合器放置的有限元分析[J].医用生物力学,2017,32(5):415-421. [38] 费琦,赵凡,杨雍,等.腰椎后路融合手术对失稳模型节段稳定性及相邻节段力学的影响[J].中华医学杂志,2015,95(45):3681-3686. [39] MASUD R,SANDIPAN R,PALASH B,et al.Design and development of a novel expanding flexible rod device(FRD) for stability in the lumbar spine:A finite-element study[J].Int J Artif Organs,2020,43(12):803-810. [40] 甘东浩,乔全来,陈德强等.Waveflex半刚性内固定治疗腰椎间盘突出症的生物力学优势[J].中国组织工程研究,2019,23(36):5830-5835. [41] WANG L, ISAAC G, WILCOX R, et al.Finite element analysis of polyethylene wear in total hip replacement:A literature review[J].Proc Inst Mech Eng H,2019,233(11):1067-1088. [42] CAMPBELL G M. Skeletal assessment with finite element analysis:relevance, pitfalls and interpretation[J].Curr Opin Rheumatol,2017,29(4):402-409. [43] LOMELÍ-RIVAS A.Biomechanics of the lumbar spine:a clinical approach[J].Acta Ortop Mex(Spanish),2019 ,33(3):185-191. [44] DOWDELL J, KIM J, OVERLEY S, et al. Biomechanics and common mechanisms of injury of the cervical spine[J] .Handb Clin Neurol,2018,158:337-344. [45] OXLAND TR. Fundamental biomechanics of the spine-What we have learned in the past 25 years and future directions[J].J Biomech,2016,49(6):817-832. [46] CHEN X L, GUAN L, LIU Y Z, et al. Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years[J].Int Orthop,2016,40(6):1275-1283. [47] DAVIS R J. Decompression and coflex interlaminar stabilization compared with decompression and instrumented spinal fusion forspinal stenosis and low-grade degenerative spondylolisthesis:two-year results from the prospective, randomized, multicenter, Food and Drug Administration Investigational Device Exemption trial [J].Spine(Phila Pa 1976),2013, 38(18):1529-1539. [48] 曹亮亮,徐建广,梅伟.三维有限元法分析腰骶区椎间融合联合置入棘突间动态内固定装置后腰椎的生物力学变化[J].中国组织工程研究,2020,24(12):1905-1910. [49] 董可欣,马德春,李秋菊,等.人工腰椎间盘假体设计原理研究及未来趋势发展[J].中国组织工程研究,2014,18(26):5254-5259. [50] Mazas S, Benzakour A, Castelain J E,et al. Cervical disc herniation:which surgery?[J].Int Orthop,2019 ,43(4):761-766. [51] PENG B. Cervical vertigo:historical reviews and advances[J].World Neurosurg,2018 ,109:347-350. |
[1] |
赵龙珍, 边燕. 颈椎前路与后路减压复位融合术治疗下颈椎骨折伴脊髓损伤的对照研究[J]. 医学临床研究, 2021, 38(9): 1311-1314. |
[2] |
柯昌武. 后路椎间融合术与后前路联合手术治疗老年骨质疏松性椎体骨折合并腰椎管狭窄症的临床疗效比较[J]. 医学临床研究, 2020, 37(9): 1312-1315. |
[3] |
唐锡国, 杨武, 唐锡辉, 王大朋, 李俊, 曹勇. 两种不同前路减压植骨融合内固定术治疗胸腰椎爆裂性骨折的早期疗效分析[J]. 医学临床研究, 2020, 37(9): 1384-1386. |
[4] |
王守刚, 岳海源. 伤椎固定并重建后方韧带复合体治疗胸腰椎爆裂骨折的临床疗效[J]. 医学临床研究, 2020, 37(8): 1195-1197. |
[5] |
李道焕. 腰椎间盘突出症后路腰椎间融合术后患者对下肢DVT疾病认知及健康教育需求调查[J]. 医学临床研究, 2020, 37(8): 1239-1241. |
[6] |
曾政, 张超杰. 肉芽肿性小叶性乳腺炎的病因学研究进展[J]. 医学临床研究, 2020, 37(7): 965-967. |
[7] |
陈俊宏, 唐艳艳, 周菊梅, 聂少麟. 环状RNA调控肿瘤转移机制的研究进展[J]. 医学临床研究, 2020, 37(4): 492-494. |
[8] |
高云龙, 刘宏滨, 王颖, 文磊. 退行性脊柱侧凸畸形患者术后融合失败的影响因素分析[J]. 医学临床研究, 2020, 37(3): 462-464. |
[9] |
龚东亮, 何小健. 双侧管状通道微创经椎孔腰椎椎间融合术治疗单节段腰椎滑脱症的临床疗效[J]. 医学临床研究, 2019, 36(1): 177-178. |
[10] |
欧阳智华,孙建特,王程,晏怡果,王文军. 改良解剖型颈椎钛网在颈椎前路椎体次全切术中的三维有限元分析[J]. 医学临床研究, 2017, 34(7): 1267-1270. |
[11] |
郭克淼;李晶;. 胸腰椎爆裂骨折后路手术后椎体内空隙高度的CT影像测量及其临床意义[J]. 医学临床研究, 2017, 34(4): 658-663. |
[12] |
赵波;邱晓文;李萌;王栋;秦杰;张峰. 微创椎弓根螺钉治疗不稳定性胸腰椎骨折的疗效分析[J]. 医学临床研究, 2017, 34(2): 247-250,252. |
[13] |
魏国强,李耀宸,徐汪洋,周晓忠,李贵涛. 矢向轴动态椎弓根钉棒系统固定腰椎失稳有限元分析[J]. 医学临床研究, 2017, 34(10): 1904-1908. |
[14] |
邱庆虎;王全彬;石永进. Dynesys动态固定治疗腰椎退变性疾病的早期疗效观察[J]. 医学临床研究, 2017, 34(1): 119-121. |
[15] |
桂曙光 李德彬 刘安平 胡小东. 腰椎融合术后下腰痛与腰椎前凸角的相关性研究[J]. 医学临床研究, 2016, 33(2): 244-247. |
|
|
|
|