[1] ADAMS M A, DOLAN P. Spine biomechanics[J].J Biomech,2005, 38(10):1972-1983. [2] HARTMANN F, DIETZ S O, HELY H, et al. Biomechanical effect of different interspinous devices on lumbar spinal range of motion under preload conditions[J].Arch Orthop Trauma Surg,2011, 131(7):917-926. [3] BELYTSCHKO T B,ANDRIACEHI T P,SCHULTZ A B,et al.AnMog studies offorces in the human spine:computational techniques[J].J Biomech,1973,6(4):361-371. [4] KRAG M H, SEROUSSI R E, WILDER D G, et al. Internal displace-ment distribution from in vitro loading of human thoracic and lum-bar spinal motion segments:experimental results and theoretical redictions [J].Spine,1987, 12(12):1001-1007. [5] ACHILLES V,STEFANOUDAKIS G,PETOUSIS M,et al. Evalua tion of an intact,an ACL- deficient,and a reconstruct ed human knee joint finite element model[J].Comput Methods Biomech Biomed Engin,2016,19(3):263-270. [6] MAZAS S, BENZAKOUR A, CASTELAIN J E, et al . Cervical disc herniation:which surgery?[J] .Int Orthop,2019 ,43(4):761-766. [7] NOURI A, TETREAULT L, SINGH A, et al . Degenerative cervical myelopathy:epidemiology, genetics, and pathogenesis[J] .Spine(Phila Pa 1976),2015,40(12):E675-693. [8] BOZIC K J,KEYAK J H,SKINNER H B,et al.Three-dimensional finite element modeling of a cervical vertebra:an investigation of burst fracture mechanism[J].J Spinal Disord,1994,7(2):102-110. [9] BISWAS J K, RANA M, MAJUMDER S, et al. Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine:A finite element study[J].J Orthop Sci,2018, 23(2):258-265. [10] CRONIN D S ,LASSWELL T I, MEDLEY J B, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J].Spine J,2017,17(11):1755-1764. [11] GREAVCS C Y,GADALA M S,OXLAND T R.A three-dimensional finite element model of the cervical spine with spinal cord:an investigation of three injury mechanisms[J].Ann Biomed Eng,2008,36(3):396-405. [12] MOHAMMAD N,CHENG Z,WANG A,et al.Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications[J].Comput Biol Med,2019,109:22-32. [13] ZHIGANG L I,XIAOQIANG H A N,CHENG J I,et al. Construction of a statistical cervical vertebrae geometric model for children 3-10 years old[J].Ann Biomed Eng,2018,46(11):1816-1829. [14] TOBERT D G, ANTOCI V, PATEL S P, et al. Adjacent segment disease in the cervical and lumbar spine[J].Clin Spine Surg,2017,30(3):94-101. [15] 王卫明, 金大地, 瞿东滨. 大鼠增龄及颈椎间盘退变过程中髓核形态转化的研究[J].中华医学杂志, 2005,28:2008-2009. [16] KUROWSKI P, KUBO A. The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae [J].Spine(Phila Pa 1976),1986, 11(7):726-731. [17] KUMAIESAN S,YOGENANDAN N,PINTAR F A.Contribution of disc degeneration to osteophyte formation in the cervical spine:a biomechenical investigation[J].Orthop Res,2001,19(5):977-984. [18] HASSAN C R, QIN Y X, KOMATSU D E, et al. Utilization of finite element analysis for articular cartilage tissue engineering[J].Materials(Basel),2019,12(20):3331. [19] YE Y, YOU W, ZHU W, et al. The applications of finite element analysis in proximal humeral fractures[J].Comput Math Methods Med,2017,2017:4879836. [20] CHAPPUIS V, GAMER L, COX K, et al. Periosteal BMP2 activity drives bone graft healing[J].Bone,2012, 51(4):800-809. [21] WANG Q, HUANG C, XUE M, et al. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing[J].Bone,2011, 48(3):524-532. [22] MARYCZ K,MIESZEK A, GRZESIAK J, et al. The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO2 solgel-derived biomaterial[J].Biomed Res Int,2015:651097. [23] VAN OOIJ A,ONER F C,VERBOUT A J.Complications of artificial disc replacement:a report of 27 patients with the SB Charit'e disc [J].J Spinal Disord Tech,2003,16:369-383. [24] 舒启航,廖亦佳,薛静波,等.新型颈椎3D打印多孔椎间融合器的三维有限元分析[J].中国组织工程研究,2021,25(24):3810-3815. [25] 林国中, 王振宇. 应用有限元模型研究颈椎椎板切除术后的稳定性[J].中华神经外科疾病研究杂志, 2010, 9(4):379. [26] XUEXIAO,M A XIANBO,PENG HONGFEI,XIANG, et al.A finite element modeling of posterior atlantoaxial fixation and biomechanical analysis of C2 intralaminar screw fixation.[J].Chin Med J(Engl),2014,127(7):1266-1271. [27] SAITO T , YAMAMURO T , SHIKATA J , et al. Analysis and prevention of spinal column deformity following cervical laminectomy. I. Pathogenetic analysis of postlaminectomy deformities.[J].Spine,1991, 16(5):494-502. [28] SHIRAZI-ADL, A. Analysis of role of bone compliance on mechanics of a lumbar motion segment[J].J Biomech Eng,1994, 116(4):408-412. [29] NG H W , TEO E C , ZHANG Q H . Prediction of inter-segment stability and osteophyte formation on the multi-segment C2-C7 after unilateral and bilateral facetectomy[J].Pro Inst Mech Eng H,2004, 218(3):183-191. [30] GOEL V K . Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol[J].Spine(Phila Pa 1976),2005,30(24):2755-2764. [31] NATARAJAN R N, ANDERSSON G B. The influence of lumbar disc height and cross -sectional area on the mechanical response of the disc to physiologic loading [J].Spine(Phila Pa 1976),1999, 24(18):1873-1781. [32] GOEL V K,PARK H,KONG W. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach[J].J Biomech Eng,1994, 116(4):377-383. [33] KIM Y E. Effect of disc degeneration at one level on the adjacent level in axial mode [J] .Spine(Phila Pa 1976),1991, 16(3):331-335. [34] SIMON B R, WU J S, CARLTON M W, et al .Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disc[J].J Biomech Eng,1985, 107(4):327-335. [35] 刘耀升.腰椎L4~L5活动节段有限元模型的建立与验证[J].第二军医大学学报, 2006,6:665-669. [36] 郭惠智,梁德,张顺聪,等.斜外侧入路椎间融合术不同内固定方式的有限元分析[J].医学研究生学报,2020,33(4):394-398. [37] 余伟波,王健,梁德,等.TLIF术中最优化单侧螺钉植入和融合器放置的有限元分析[J].医用生物力学,2017,32(5):415-421. [38] 费琦,赵凡,杨雍,等.腰椎后路融合手术对失稳模型节段稳定性及相邻节段力学的影响[J].中华医学杂志,2015,95(45):3681-3686. [39] MASUD R,SANDIPAN R,PALASH B,et al.Design and development of a novel expanding flexible rod device(FRD) for stability in the lumbar spine:A finite-element study[J].Int J Artif Organs,2020,43(12):803-810. [40] 甘东浩,乔全来,陈德强等.Waveflex半刚性内固定治疗腰椎间盘突出症的生物力学优势[J].中国组织工程研究,2019,23(36):5830-5835. [41] WANG L, ISAAC G, WILCOX R, et al.Finite element analysis of polyethylene wear in total hip replacement:A literature review[J].Proc Inst Mech Eng H,2019,233(11):1067-1088. [42] CAMPBELL G M. Skeletal assessment with finite element analysis:relevance, pitfalls and interpretation[J].Curr Opin Rheumatol,2017,29(4):402-409. [43] LOMELÍ-RIVAS A.Biomechanics of the lumbar spine:a clinical approach[J].Acta Ortop Mex(Spanish),2019 ,33(3):185-191. [44] DOWDELL J, KIM J, OVERLEY S, et al. Biomechanics and common mechanisms of injury of the cervical spine[J] .Handb Clin Neurol,2018,158:337-344. [45] OXLAND TR. Fundamental biomechanics of the spine-What we have learned in the past 25 years and future directions[J].J Biomech,2016,49(6):817-832. [46] CHEN X L, GUAN L, LIU Y Z, et al. Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years[J].Int Orthop,2016,40(6):1275-1283. [47] DAVIS R J. Decompression and coflex interlaminar stabilization compared with decompression and instrumented spinal fusion forspinal stenosis and low-grade degenerative spondylolisthesis:two-year results from the prospective, randomized, multicenter, Food and Drug Administration Investigational Device Exemption trial [J].Spine(Phila Pa 1976),2013, 38(18):1529-1539. [48] 曹亮亮,徐建广,梅伟.三维有限元法分析腰骶区椎间融合联合置入棘突间动态内固定装置后腰椎的生物力学变化[J].中国组织工程研究,2020,24(12):1905-1910. [49] 董可欣,马德春,李秋菊,等.人工腰椎间盘假体设计原理研究及未来趋势发展[J].中国组织工程研究,2014,18(26):5254-5259. [50] Mazas S, Benzakour A, Castelain J E,et al. Cervical disc herniation:which surgery?[J].Int Orthop,2019 ,43(4):761-766. [51] PENG B. Cervical vertigo:historical reviews and advances[J].World Neurosurg,2018 ,109:347-350. |