[1] Sahinovic MM,Struys M,Absalom AR.Clinical pharmacokinetics and pharmacodynamics of propofol[J].Clin Pharmacokinet,2018,57(12):1539-1558. [2] Hemphill S.Propofol infusion syndrome: a structured literature review and analysis of published case reports[J].Br J Anaesth,2019,122(4):448-459. [3] Radhakrishnan A,Kuppusamy G,Ponnusankar S,et al. Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery[J].Pharmacogenomics J,2020,20(1):1-18. [4] Thürmann PA.Pharmacodynamics and pharmacokinetics in older adults[J].Curr Opin Anaesthesiol,2020,33(1):109-113. [5] Farkouh A.Sex-related differences in pharmacokinetics and pharmacodynamics of frequently prescribed drugs: a review of the literature[J].Adv Ther,2020,37(2):644-655. [6] Smit C,De Hoogd S,Brüggemann RJM,et al. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters[J].Expert Opin Drug Metab Toxicol,2018,14(3):275-285. [7] Tansley G,Hall R.Pharmacokinetic considerations for drugs administered in the critically ill[J].Br J Hosp Med (Lond),2015,76(2):89-94. [8] Niu J,Straubinger RM,Mager DE.Pharmacodynamic drug-drug interactions[J].Clin Pharmacol Ther,2019,105(6):1395-1406. [9] Roden DM,McLeod HL,Relling MV,et al. Pharmacogenomics[J].Lancet,2019,394(10197):521-532. [10] Johnson JA,Caudle KE,Gong L,et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update[J].Clin Pharmacol Ther,2017,102(3):397-404. [11] Theken KN,Lee CR,Gong L,et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs[J].Clin Pharmacol Ther,2020,108(2):191-200. [12] Lin B,Chung WK.Cases in precision medicine: the role of pharmacogenetics in precision prescribing[J].Ann Intern Med,2019,170(11):796-804. [13] Wang H,Tompkins LM.CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme[J].Curr Drug Metab,2008,9(7):598-610. [14] Zukunft J,Lang T,Richter T,et al. A natural CYP2B6 TATA box polymorphism (-82T--> C) leading to enhanced transcription and relocation of the transcriptional start site[J].Mol Pharmacol,2005,67(5):1772-1782. [15] Hofmann MH,Blievernicht JK,Klein K,et al. Aberrant splicing caused by single nucleotide polymorphism c.516G>T [Q172H], a marker of CYP2B6*6, is responsible for decreased expression and activity of CYP2B6 in liver[J].J Pharmacol Exp Ther,2008,325(1):284-292. [16] Pavlovic D,Budic I,Jevtovic Stoimenov T,et al. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on propofol pharmacokinetics in children[J].Pharmgenomics Pers Med,2020,13:13-27. [17] Mourao AL,de Abreu FG,Fiegenbaum M. Impact of the cytochrome P450 2B6 (CYP2B6) gene polymorphism c.516G>T (rs3745274) on propofol dose variability[J].Eur J Drug Metab Pharmacokinet,2016,41(5):511-515. [18] Kansaku F,Kumai T,Sasaki K,et al. Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGT1A9 genotype and patient age[J].Drug Metab Pharmacokinet,2011,26(5):532-537. [19] Mastrogianni O,Gbandi E,Orphanidis A,et al. Association of the CYP2B6 c.516G>T polymorphism with high blood propofol concentrations in women from northern Greece[J].Drug Metab Pharmacokinet,2014,29(2):215-218. [20] Mikstacki A,Zakerska-Banaszak O,Skrzypczak-Zielinska M,et al. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on individual differences in propofol pharmacokinetics among Polish patients undergoing general anaesthesia[J].J Appl Genet,2017,58(2):213-220. [21] 古安城,曹婉雯,张建萍,等. CYP2B6* 6基因多态性对中国健康受试者单次注射丙泊酚的药代动力学和药效学影响[J].中国临床药理学杂志,2018,34(9):1052-1055. [22] Eugene AR.CYP2B6 genotype guided dosing of propofol anesthesia in the elderly based on nonparametric population pharmacokinetic modeling and simulations[J].Int J Clin Pharmacol Toxicol,2017,6(1):242-249. [23] Loryan I,Lindqvist M,Johansson I,et al. Influence of sex on propofol metabolism, a pilot study: implications for propofol anesthesia[J].Eur J Clin Pharmacol,2012,68(4):397-406. [24] Choong E,Loryan I,Lindqvist M,et al. Sex difference in formation of propofol metabolites: a replication study[J].Basic Clin Pharmacol Toxicol,2013,113(2):126-131. [25] Iohom G,Ni Chonghaile M,O'Brien JK,et al. An investigation of potential genetic determinants of propofol requirements and recovery from anaesthesia[J].Eur J Anaesthesiol,2007,24(11):912-919. [26] Khan MS,Zetterlund E-L,Gréen H,et al. Pharmacogenetics, plasma concentrations, clinical signs and EEG during propofol treatment[J].Basic Clin Pharmacol Toxicol,2014,115(6):565-570. [27] Kanaya A,Sato T,Fuse N,et al. Impact of clinical factors and UGT1A9 and CYP2B6 genotype on inter-individual differences in propofol pharmacokinetics[J].J Anesth,2018,32(2):236-243. [28] Zakerska-Banaszak O,Skrzypczak-Zielinska M,Tamowicz B,et al. Longrange PCR-based next-generation sequencing in pharmacokinetics and pharmacodynamics study of propofol among patients under general anaesthesia[J].Sci Rep,2017,7(1):15399. [29] Wang YB,Zhang RZ,Huang SH,,et al. Relationship between UGT1A9 gene polymorphisms. Relationship between UGT1A9 gene polymorphisms, efficacy,safety of propofol in induced abortions amongst Chinese population: a population-based study[J].Biosci Rep,2017,37(5):BSR20170722. [30] Takahashi H,Maruo Y,Mori A,et al. Effect of D256N and Y483D on propofol glucuronidation by human uridine 5'-diphosphate glucuronosyltransferase (UGT1A9)[J].Basic Clin Pharmacol Toxicol,2008,103(2):131-136. |