[1] Calderon MA, Frankland AW, Demoly P. Allergen immunotheapy and allergic rhinitis: false beliefs[J]. BMC Med, 2013, 11:255. [2] Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway[J]. J Cell Sci, 2004, 117(Pt8):1281-1283. [3] Christodoulopoulos P, Cameron L, Nakamura Y, et al. Th2 cytokine-associated transcription factors in atopic and nonatopic asthma: evidence for differential signal transducer and activator of transcription 6 expression[J]. J Allergy Clin Immunol, 2001, 107(5):586-591. [4] Kurata H, Lee HJ, O’Garra A, et al. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells[J]. Immunity, 1999, 11:677-688. [5] Elliott J, Johnston JA. SOCS: role in inflammation, allergy and homeostasis[J]. Trends Immunol, 2004, 25(8):434-440. [6] Agnello D, Lankford CS, Bream J, et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights[J]. J Clin Immunol, 2003, 23(3):147-161. [7] Lewis BP, Burge CB, Bartel DP. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets[J]. Cell, 2005, 120(1):15-20. [8] Shaoqing Y, Ruxin Z, Guojun L, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis[J]. Am J Rhinol Allergy, 2011, 25(6):e242-e246. [9] Teng Y, Zhang R, Liu C, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13R α 1[J]. Biochem Biophys Res Commun, 2015, 457(1):58-64. [10] Suojalehto H, Toskala E, Kilpelinen M, et al. MicroRNA profiles in nasal mucosa of patients with allergic and nonallergic rhinitis and asthma[J]. Int Forum Allergy Rhinol, 2013, 3(8):612-620. [11] Allende ML, Dreier JL, Mandala S, et al. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration[J]. J Biol Chem, 2004, 279(15):15396-15401. [12] Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1[J]. Nature, 2004, 427(6972):355-360. [13] Malmhll C, Alawieh S, Lu Y, et al. MicroRNA-155 is essential for T(H)2-mediated allergeninduced eosinophilic inflammation in the lung[J]. Allergy Clin Immunol, 2014, 133(5):1429-1438. [14] Chen RF, Huang HC, Ou CY, et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis[J]. Clin Exp Allergy, 2010, 40(10):1482-1490. [15] Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA[J]. Nucleic Acids Res, 2011, 39(16):7223-7233. [16] Luo Y, Deng Y, Tao Z, et al. Regulatory effect of microRNA-135a on the Th1/Th2 imbalance in a murine model of allergic rhinitis[J]. Exp Ther Med, 2014, 8(4):1105-1110. [17] Lu TX, Lim EJ, Besse JA, et al. miR-223 deficiency increases eosinophil progenitor proliferation[J]. J Immunol, 2013, 190(4):1576-1582. [18] Lu TX, Lim EJ, Itskovich S, et al. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth[J]. PLoS One, 2013, 8:e59397. [19] Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA[J]. J Cell Mol Med, 2009, 13(1):39-53. [20] Hatley ME, Patrick DM, Garcia MR. , et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21[J]. Cancer Cell, 2010, 18(3):282-293. [21] Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J]. Proc Natl Acad Sci USA, 2011, 108(12):5003-5008. [22] Roush S, Slack FJ. The let-7 family of microRNAs[J]. Trends Cell Biol, 2008, 18(10):505-516. [23] Polikepahad S, Knight JM, Naghavi AO, et al. Proinflammatory role for let-7 microRNAS in experimental asthma[J]. J Biol Chem, 2010, 285(48):30139-30149. |