[1] Taylor CA, Hughes TJ, Zarins CK. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis[J].Ann Biomed Eng,1998,26(6):975-987. [2] Steinman DA. Image-based computational fluid dynamics modeling in realistic arterial geometries[J].Ann Biomed Eng,2002,30(4):483-497. [3] Cebral JR, Castro MA, Burgess JE,et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models[J].AJNR Am J Neuroradiol,2005,26(10):2550-2559. [4] Cebral JR, Mut F, Weir J, et al. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms[J].AJNR Am J Neuroradiol,2011,32(1):145-151. [5] Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture[J].Stroke,2011,42(1):144-152. [6] Wong SC, Nawawi O, Ramli N, et al. Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm[J].Acad Radiol,2012,19(6):701-707. [7] Geers AJ, Larrabide I, Radaelli AG, et al. Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study[J].AJNR Am J Neuroradiol,2011,32(3):581-586. [8] Schneiders JJ, Marquering HA, Antiga L, et al. Intracranial aneurysm neck size overestimation with 3D rotational angiography: the impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics[J].AJNR Am J Neuroradiol,2013,34(1):121-128. [9] Ren Y. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography[J].Biomed Eng Online,2016,15(1):50. [10] Ford MD, Nikolov HN, Milner JS, et al. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models[J].J Biomech Eng,2008,130(2):021015. [11] Berg P, Roloff C,Beuing O, et al. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms[J].J Biomech Eng,2015,137(12): 121008. [12] Valencia A, Munizaga J, Rivera R, et al. Numerical investigation of the hemodynamics in anatomically realistic lateral cerebral aneurysms[J].Conf Proc IEEE Eng Med Biol Soc,2010,2010:2616-2621. [13] Sforza DM.Blood-flow characteristics in a terminal basilar tip aneurysm prior to its fatal rupture[J].AJNR Am J Neuroradiol,2010,31(6):1127-1131. [14] Lv N, Wang C, Karmonik C, et al. Morphological and Hemodynamic Discriminators for Rupture Status in Posterior Communicating Artery Aneurysms[J].PLoS One,2016,11(2):e0149906. [15] Sugiyama S, Meng H, Funamoto K, et al. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery[J].World Neurosurg, 2012,78(5):462-468. [16] Lu G, Huang L, Zhang XL, et al. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation[J].AJNR Am J Neuroradiol,2011,32(7):1255-1261. [17] Tian Z, Zhang Y, Jing L, et al. Rupture Risk Assessment for Mirror Aneurysms with Different Outcomes in the Same Patient[J].Front Neurol,2016,7:219. [18] Kono K, Fujimoto T, Shintani A, et al. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study[J].Neurosurgery,2012,71(6):E1202-1208. [19] Hoi Y, Ionita CN, Tranquebar RV, et al. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses[J].Proc SPIE Int Soc Opt Eng,2006,6143:61430J. [20] Cito S, Geers AJ, Arroyo MP, et al. Accuracy and reproducibility of patient-specific hemodynamic models of stented intracranial aneurysms: report on the Virtual Intracranial Stenting Challenge 2011[J].Ann Biomed Eng,2015,43(1):154-167. [21] Damiano RJ, Ma D, Xiang J, et al. Finite element modeling of endovascular coiling and flow diversion enables hemodynamic prediction of complex treatment strategies for intracranial aneurysm[J].J Biomech,2015,48(12):3332-3340. [22] Tang AY, Chung WC, Liu ET, et al. Computational Fluid Dynamics Study of Bifurcation Aneurysms Treated with Pipeline Embolization Device: Side Branch Diameter Study[J].J Med Biol Eng,2015,35(3):293-304. [23] Wang C, Tian Z, Liu J, et al. Hemodynamic alterations after stent implantation in 15 cases of intracranial aneurysm[J].Acta Neurochir (Wien),2016,158(4):811-819. [24] 赵丛海, 李淼, 史万超, 等. 颅内动脉瘤内涡流的血流动力学研究[J].中华实验外科杂志,2006,23(12):1447-1449. [25] 于红玉, 李海云, 张莹, 等. 基于影像数据的三维颅内动脉瘤血流动力学数值:手术前后壁面切模拟对比[J].中国组织工程研究与临床康复,2010,14(39):7327-7330. [26] 陈军.颅内未破裂与破裂动脉瘤血流动力学数值模拟研究[J].中国脑血管病杂志,2010,7(12):626-630. [27] Hu P, Qian Y, Lee CJ, et al. The energy loss may predict rupture risks of anterior communicating aneurysms: a preliminary result[J].Int J Clin Exp Med,2015,8(3):4128-4133. [28] Castro MA, Ahumada OMC, Putman CM, et al. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models[J].Med Biol Eng Comput,2014,52(10):827-839. [29] Evju , Valen-Sendstad K, Mardal KA. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions[J].J Biomech,2013,46(16):2802-2808. [30] Pereira VM, Brina O, Marcos GA, et al. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment[J].J Biomech,2013,46(9):1531-1539. [31] Meng H, Tutino VM, Xiang J, et al. High WSS or low WSS Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis[J].AJNR Am J Neuroradiol,2014,35(7):1254-1262. (本文编辑:张兴珍) [收稿日期] 2017-03-06